3.8.45 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2} (f+g x)^{3/2}} \, dx\) [745]

3.8.45.1 Optimal result
3.8.45.2 Mathematica [A] (verified)
3.8.45.3 Rubi [A] (verified)
3.8.45.4 Maple [A] (verified)
3.8.45.5 Fricas [A] (verification not implemented)
3.8.45.6 Sympy [F]
3.8.45.7 Maxima [F]
3.8.45.8 Giac [B] (verification not implemented)
3.8.45.9 Mupad [F(-1)]

3.8.45.1 Optimal result

Integrand size = 48, antiderivative size = 222 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^{3/2}} \, dx=\frac {3 c d \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g^2 \sqrt {d+e x}}-\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} \sqrt {f+g x}}-\frac {3 \sqrt {c} \sqrt {d} (c d f-a e g) \sqrt {a e+c d x} \sqrt {d+e x} \text {arctanh}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{g^{5/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \]

output
-2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/g/(e*x+d)^(3/2)/(g*x+f)^(1/2)-3 
*(-a*e*g+c*d*f)*arctanh(g^(1/2)*(c*d*x+a*e)^(1/2)/c^(1/2)/d^(1/2)/(g*x+f)^ 
(1/2))*c^(1/2)*d^(1/2)*(c*d*x+a*e)^(1/2)*(e*x+d)^(1/2)/g^(5/2)/(a*d*e+(a*e 
^2+c*d^2)*x+c*d*e*x^2)^(1/2)+3*c*d*(g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c* 
d*e*x^2)^(1/2)/g^2/(e*x+d)^(1/2)
 
3.8.45.2 Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 158, normalized size of antiderivative = 0.71 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^{3/2}} \, dx=\frac {\sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {g} \sqrt {a e+c d x} (-2 a e g+c d (3 f+g x))-3 \sqrt {c} \sqrt {d} (c d f-a e g) \sqrt {f+g x} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {f+g x}}{\sqrt {g} \sqrt {a e+c d x}}\right )\right )}{g^{5/2} \sqrt {(a e+c d x) (d+e x)} \sqrt {f+g x}} \]

input
Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*( 
f + g*x)^(3/2)),x]
 
output
(Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[g]*Sqrt[a*e + c*d*x]*(-2*a*e*g + c* 
d*(3*f + g*x)) - 3*Sqrt[c]*Sqrt[d]*(c*d*f - a*e*g)*Sqrt[f + g*x]*ArcTanh[( 
Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])/(Sqrt[g]*Sqrt[a*e + c*d*x])]))/(g^(5/2)*Sqr 
t[(a*e + c*d*x)*(d + e*x)]*Sqrt[f + g*x])
 
3.8.45.3 Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.02, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.104, Rules used = {1249, 1250, 1268, 66, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^{3/2}} \, dx\)

\(\Big \downarrow \) 1249

\(\displaystyle \frac {3 c d \int \frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x} \sqrt {f+g x}}dx}{g}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} \sqrt {f+g x}}\)

\(\Big \downarrow \) 1250

\(\displaystyle \frac {3 c d \left (\frac {\sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x}}-\frac {(c d f-a e g) \int \frac {\sqrt {d+e x}}{\sqrt {f+g x} \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 g}\right )}{g}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} \sqrt {f+g x}}\)

\(\Big \downarrow \) 1268

\(\displaystyle \frac {3 c d \left (\frac {\sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x}}-\frac {\sqrt {d+e x} \sqrt {a e+c d x} (c d f-a e g) \int \frac {1}{\sqrt {a e+c d x} \sqrt {f+g x}}dx}{2 g \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{g}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} \sqrt {f+g x}}\)

\(\Big \downarrow \) 66

\(\displaystyle \frac {3 c d \left (\frac {\sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x}}-\frac {\sqrt {d+e x} \sqrt {a e+c d x} (c d f-a e g) \int \frac {1}{c d-\frac {g (a e+c d x)}{f+g x}}d\frac {\sqrt {a e+c d x}}{\sqrt {f+g x}}}{g \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{g}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} \sqrt {f+g x}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {3 c d \left (\frac {\sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x}}-\frac {\sqrt {d+e x} \sqrt {a e+c d x} (c d f-a e g) \text {arctanh}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{\sqrt {c} \sqrt {d} g^{3/2} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{g}-\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{g (d+e x)^{3/2} \sqrt {f+g x}}\)

input
Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g* 
x)^(3/2)),x]
 
output
(-2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(g*(d + e*x)^(3/2)*Sqrt 
[f + g*x]) + (3*c*d*((Sqrt[f + g*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e 
*x^2])/(g*Sqrt[d + e*x]) - ((c*d*f - a*e*g)*Sqrt[a*e + c*d*x]*Sqrt[d + e*x 
]*ArcTanh[(Sqrt[g]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])])/(S 
qrt[c]*Sqrt[d]*g^(3/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])))/g
 

3.8.45.3.1 Defintions of rubi rules used

rule 66
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] &&  !GtQ[c - a*(d/b), 0]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1249
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^m*(f + g*x)^(n + 1)*((a + 
 b*x + c*x^2)^p/(g*(n + 1))), x] + Simp[c*(m/(e*g*(n + 1)))   Int[(d + e*x) 
^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b 
, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && G 
tQ[p, 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])
 

rule 1250
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(d + e*x)^m)*(f + g*x)^(n + 1)*(( 
a + b*x + c*x^2)^p/(g*(m - n - 1))), x] - Simp[m*((c*e*f + c*d*g - b*e*g)/( 
e^2*g*(m - n - 1)))   Int[(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^( 
p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c*d^2 - b*d*e + 
 a*e^2, 0] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&  !IGtQ[n, 
0] &&  !(IntegerQ[n + p] && LtQ[n + p + 2, 0]) && RationalQ[n]
 

rule 1268
Int[((d_) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_ 
) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x + c*x^2)^FracPart[p]/((d 
 + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p])   Int[(d + e*x)^(m + p)*(f 
 + g*x)^n*(a/d + (c/e)*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x 
] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 
3.8.45.4 Maple [A] (verified)

Time = 0.59 (sec) , antiderivative size = 373, normalized size of antiderivative = 1.68

method result size
default \(\frac {\left (3 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) a c d e \,g^{2} x -3 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) c^{2} d^{2} f g x +3 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) a c d e f g -3 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) c^{2} d^{2} f^{2}+2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}\, c d g x -4 \sqrt {c d g}\, \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, a e g +6 \sqrt {c d g}\, \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, c d f \right ) \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}}{2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}\, g^{2} \sqrt {g x +f}\, \sqrt {e x +d}}\) \(373\)

input
int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^(3/2),x, 
method=_RETURNVERBOSE)
 
output
1/2*(3*ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(c*d*g) 
^(1/2))/(c*d*g)^(1/2))*a*c*d*e*g^2*x-3*ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g 
*x+f)*(c*d*x+a*e))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*c^2*d^2*f*g*x+3*ln( 
1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(c*d*g)^(1/2))/(c 
*d*g)^(1/2))*a*c*d*e*f*g-3*ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x 
+a*e))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*c^2*d^2*f^2+2*((g*x+f)*(c*d*x+a 
*e))^(1/2)*(c*d*g)^(1/2)*c*d*g*x-4*(c*d*g)^(1/2)*((g*x+f)*(c*d*x+a*e))^(1/ 
2)*a*e*g+6*(c*d*g)^(1/2)*((g*x+f)*(c*d*x+a*e))^(1/2)*c*d*f)*((c*d*x+a*e)*( 
e*x+d))^(1/2)/((g*x+f)*(c*d*x+a*e))^(1/2)/(c*d*g)^(1/2)/g^2/(g*x+f)^(1/2)/ 
(e*x+d)^(1/2)
 
3.8.45.5 Fricas [A] (verification not implemented)

Time = 1.15 (sec) , antiderivative size = 663, normalized size of antiderivative = 2.99 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^{3/2}} \, dx=\left [\frac {4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d g x + 3 \, c d f - 2 \, a e g\right )} \sqrt {e x + d} \sqrt {g x + f} - 3 \, {\left (c d^{2} f^{2} - a d e f g + {\left (c d e f g - a e^{2} g^{2}\right )} x^{2} + {\left (c d e f^{2} - a d e g^{2} + {\left (c d^{2} - a e^{2}\right )} f g\right )} x\right )} \sqrt {\frac {c d}{g}} \log \left (-\frac {8 \, c^{2} d^{2} e g^{2} x^{3} + c^{2} d^{3} f^{2} + 6 \, a c d^{2} e f g + a^{2} d e^{2} g^{2} + 4 \, {\left (2 \, c d g^{2} x + c d f g + a e g^{2}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} \sqrt {g x + f} \sqrt {\frac {c d}{g}} + 8 \, {\left (c^{2} d^{2} e f g + {\left (c^{2} d^{3} + a c d e^{2}\right )} g^{2}\right )} x^{2} + {\left (c^{2} d^{2} e f^{2} + 2 \, {\left (4 \, c^{2} d^{3} + 3 \, a c d e^{2}\right )} f g + {\left (8 \, a c d^{2} e + a^{2} e^{3}\right )} g^{2}\right )} x}{e x + d}\right )}{4 \, {\left (e g^{3} x^{2} + d f g^{2} + {\left (e f g^{2} + d g^{3}\right )} x\right )}}, \frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d g x + 3 \, c d f - 2 \, a e g\right )} \sqrt {e x + d} \sqrt {g x + f} + 3 \, {\left (c d^{2} f^{2} - a d e f g + {\left (c d e f g - a e^{2} g^{2}\right )} x^{2} + {\left (c d e f^{2} - a d e g^{2} + {\left (c d^{2} - a e^{2}\right )} f g\right )} x\right )} \sqrt {-\frac {c d}{g}} \arctan \left (\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} \sqrt {g x + f} \sqrt {-\frac {c d}{g}} g}{2 \, c d e g x^{2} + c d^{2} f + a d e g + {\left (c d e f + {\left (2 \, c d^{2} + a e^{2}\right )} g\right )} x}\right )}{2 \, {\left (e g^{3} x^{2} + d f g^{2} + {\left (e f g^{2} + d g^{3}\right )} x\right )}}\right ] \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^(3 
/2),x, algorithm="fricas")
 
output
[1/4*(4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*g*x + 3*c*d*f - 2 
*a*e*g)*sqrt(e*x + d)*sqrt(g*x + f) - 3*(c*d^2*f^2 - a*d*e*f*g + (c*d*e*f* 
g - a*e^2*g^2)*x^2 + (c*d*e*f^2 - a*d*e*g^2 + (c*d^2 - a*e^2)*f*g)*x)*sqrt 
(c*d/g)*log(-(8*c^2*d^2*e*g^2*x^3 + c^2*d^3*f^2 + 6*a*c*d^2*e*f*g + a^2*d* 
e^2*g^2 + 4*(2*c*d*g^2*x + c*d*f*g + a*e*g^2)*sqrt(c*d*e*x^2 + a*d*e + (c* 
d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f)*sqrt(c*d/g) + 8*(c^2*d^2*e*f*g 
 + (c^2*d^3 + a*c*d*e^2)*g^2)*x^2 + (c^2*d^2*e*f^2 + 2*(4*c^2*d^3 + 3*a*c* 
d*e^2)*f*g + (8*a*c*d^2*e + a^2*e^3)*g^2)*x)/(e*x + d)))/(e*g^3*x^2 + d*f* 
g^2 + (e*f*g^2 + d*g^3)*x), 1/2*(2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2 
)*x)*(c*d*g*x + 3*c*d*f - 2*a*e*g)*sqrt(e*x + d)*sqrt(g*x + f) + 3*(c*d^2* 
f^2 - a*d*e*f*g + (c*d*e*f*g - a*e^2*g^2)*x^2 + (c*d*e*f^2 - a*d*e*g^2 + ( 
c*d^2 - a*e^2)*f*g)*x)*sqrt(-c*d/g)*arctan(2*sqrt(c*d*e*x^2 + a*d*e + (c*d 
^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f)*sqrt(-c*d/g)*g/(2*c*d*e*g*x^2 + 
 c*d^2*f + a*d*e*g + (c*d*e*f + (2*c*d^2 + a*e^2)*g)*x)))/(e*g^3*x^2 + d*f 
*g^2 + (e*f*g^2 + d*g^3)*x)]
 
3.8.45.6 Sympy [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^{3/2}} \, dx=\int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}{\left (d + e x\right )^{\frac {3}{2}} \left (f + g x\right )^{\frac {3}{2}}}\, dx \]

input
integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(3/2)/(g*x+ 
f)**(3/2),x)
 
output
Integral(((d + e*x)*(a*e + c*d*x))**(3/2)/((d + e*x)**(3/2)*(f + g*x)**(3/ 
2)), x)
 
3.8.45.7 Maxima [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^{3/2}} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}}{{\left (e x + d\right )}^{\frac {3}{2}} {\left (g x + f\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^(3 
/2),x, algorithm="maxima")
 
output
integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((e*x + d)^(3/2)*( 
g*x + f)^(3/2)), x)
 
3.8.45.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 559 vs. \(2 (188) = 376\).

Time = 0.59 (sec) , antiderivative size = 559, normalized size of antiderivative = 2.52 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^{3/2}} \, dx=\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} {\left (\frac {{\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )} {\left | c \right |} {\left | d \right |}}{e^{2} g} + \frac {3 \, {\left (c d e^{2} f g {\left | c \right |} {\left | d \right |} - a e^{3} g^{2} {\left | c \right |} {\left | d \right |}\right )}}{e^{2} g^{3}}\right )}}{\sqrt {c^{2} d^{2} e^{2} f - a c d e^{3} g + {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )} c d g}} + \frac {3 \, {\left (c d f {\left | c \right |} {\left | d \right |} - a e g {\left | c \right |} {\left | d \right |}\right )} \log \left ({\left | -\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} \sqrt {c d g} + \sqrt {c^{2} d^{2} e^{2} f - a c d e^{3} g + {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )} c d g} \right |}\right )}{\sqrt {c d g} g^{2}} - \frac {3 \, \sqrt {c^{2} d^{2} e^{2} f - c^{2} d^{3} e g} c d e f {\left | c \right |} {\left | d \right |} \log \left ({\left | -\sqrt {-c d^{2} e + a e^{3}} \sqrt {c d g} + \sqrt {c^{2} d^{2} e^{2} f - c^{2} d^{3} e g} \right |}\right ) - 3 \, \sqrt {c^{2} d^{2} e^{2} f - c^{2} d^{3} e g} a e^{2} g {\left | c \right |} {\left | d \right |} \log \left ({\left | -\sqrt {-c d^{2} e + a e^{3}} \sqrt {c d g} + \sqrt {c^{2} d^{2} e^{2} f - c^{2} d^{3} e g} \right |}\right ) + 3 \, \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d g} c d e f {\left | c \right |} {\left | d \right |} - \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d g} c d^{2} g {\left | c \right |} {\left | d \right |} - 2 \, \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d g} a e^{2} g {\left | c \right |} {\left | d \right |}}{\sqrt {c^{2} d^{2} e^{2} f - c^{2} d^{3} e g} \sqrt {c d g} e g^{2}} \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^(3 
/2),x, algorithm="giac")
 
output
sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*(((e*x + d)*c*d*e - c*d^2*e + a*e^ 
3)*abs(c)*abs(d)/(e^2*g) + 3*(c*d*e^2*f*g*abs(c)*abs(d) - a*e^3*g^2*abs(c) 
*abs(d))/(e^2*g^3))/sqrt(c^2*d^2*e^2*f - a*c*d*e^3*g + ((e*x + d)*c*d*e - 
c*d^2*e + a*e^3)*c*d*g) + 3*(c*d*f*abs(c)*abs(d) - a*e*g*abs(c)*abs(d))*lo 
g(abs(-sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*sqrt(c*d*g) + sqrt(c^2*d^2* 
e^2*f - a*c*d*e^3*g + ((e*x + d)*c*d*e - c*d^2*e + a*e^3)*c*d*g)))/(sqrt(c 
*d*g)*g^2) - (3*sqrt(c^2*d^2*e^2*f - c^2*d^3*e*g)*c*d*e*f*abs(c)*abs(d)*lo 
g(abs(-sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*g) + sqrt(c^2*d^2*e^2*f - c^2*d^3*e 
*g))) - 3*sqrt(c^2*d^2*e^2*f - c^2*d^3*e*g)*a*e^2*g*abs(c)*abs(d)*log(abs( 
-sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*g) + sqrt(c^2*d^2*e^2*f - c^2*d^3*e*g))) 
+ 3*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*g)*c*d*e*f*abs(c)*abs(d) - sqrt(-c*d^2 
*e + a*e^3)*sqrt(c*d*g)*c*d^2*g*abs(c)*abs(d) - 2*sqrt(-c*d^2*e + a*e^3)*s 
qrt(c*d*g)*a*e^2*g*abs(c)*abs(d))/(sqrt(c^2*d^2*e^2*f - c^2*d^3*e*g)*sqrt( 
c*d*g)*e*g^2)
 
3.8.45.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^{3/2}} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{{\left (f+g\,x\right )}^{3/2}\,{\left (d+e\,x\right )}^{3/2}} \,d x \]

input
int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)^(3/2)*(d + e* 
x)^(3/2)),x)
 
output
int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)^(3/2)*(d + e* 
x)^(3/2)), x)